Using vswitch on z/VM

• Definition of guest lan
• Vswitch concepts
• Vswitch implementation, management, and recovery
• VM TCPIP stack configuration
• linux stack configuration
Guest Lans

- Virtual network adapters connect IP stacks in virtual machines.
- No hardware is required.
 - It’s all done by CP commands, directory statements, configuration file statements, etc.
- High speed and high volume networks.
- One z/VM system can have multiple guest lans.
 - Guest lans can connect to other guest lans …
 - Or be isolated from other guest lans
- One IP stack can belong to multiple guest lans.
- Supports multicast, unicast, broadcast networks.
- Supports all protocols.
- VM TCPIP and linux support guest lan
VSWITCH Concepts

- Special kind of Guest LAN
- Like a Guest LAN Provides network of virtual network interfaces
- Connects directly to an OSA-Express QDIO Interface
- Or can run disconnected from real devices.
- Connects to external LAN segments without need for routing on z/VM.
- Operates as layer 2 or layer 3.
- Can have multiple Vswitches on one z/VM LPAR.
VSWITCH Presentation Goals

- Show controller command for dynamic controller management with two ranges of devices
- Show controller configuration
- Show configuration of 1st level vm tcpip stack
- Show configuration of 1st level linux stack
- Show configuration of 2nd level vm tcpip stack
- Show recovery scenarios
Typical Guest Lan

Virtual nic

1.2.3.33
Linux stack

1.2.3.100
VM
TCPIP Stack
10.1.1.100

Routing packets between 1.2.3.x and 10.1.1.x networks

1.2.3.133
Linux stack

OSA

10.1.1.114

Physical network

10.1.1.115
Z/VM

linux 10.1.1.14

linux 10.1.1.15

linux 10.1.1.16

linux 10.1.1.17

CP Vswitch

Real switch

OSA MAC 08 00 20 E4 64 79

MAC 01 02 03 04 05 06

MAC 01 02 03 04 05 07

linux 10.1.1.114

linux 10.1.1.115

No routing
No routing

From virtual machines: OSA receives layer 3 packet constructs Layer 2 frame and sends outbound.

To virtual machines: OSA receives layer 2 frame constructs layer 3 packet and sends to stack

Uses subchannel to reach stack

OSA Mac used on network

Z/VM vswitch layer 3

CP DEFINE VSWITCH ... IP ...
Z/VM vswitch layer 2

CP Vswitch

No routing

OSA Arp table

Real switch

MAC 08 00 20 E4 64 79
linux 10.1.1.114

MAC 01 02 03 04 05 06

MAC 01 02 03 04 05 07
linux 10.1.1.115

Z/VM vswitch layer 2

CP DEFINE VSWITCH ... ETHERNET ..

MAC IP
02 00 00 00 00 02 10.1.1.14
02 00 00 00 00 03 10.1.1.15
02 00 00 00 00 04 10.1.1.16
02 00 00 00 00 05 10.1.1.17
01 02 03 04 05 06 10.1.1.114
01 02 03 04 05 07 10.1.1.115
Participates in VLAN

- Supports Virtual Local Area Networks (VLANs) as per IEEE 802.1Q.
- CP provides virtual switch function.
- Hosts (Virtual Machines with IP stacks) on separate VLANs are isolated from each other.
- VLAN support operates in a layer 2 or 3 vswitch.
VLANS and z/VM Vswitch Vlan 11: 10.1.11.x

Vlan 2: 172.27.35.x

CP VSWITCH

No routing

Physical switches

SHARE Session 9124

All Rights Reserved VM RESOURCES LTD.
Our Vswitch Network

TCPIPLX controller
TCPIPLZ controller
LFORXX93 linux .159
LFOR0001 2nd level vm .156
TCPIPLY VM stack .158

VMRTSW 172.27.120.x

osa devices
EC00-EC02 EB00-EB02
EC10-EC12

Guest lan
Other host 172.27.120.155

Server gateway 172.27.120.254

172.27.120.x

SHARE Session 9124 All Rights Reserved VM RESOURCES LTD. 12
Our Vswitch Network: nic devices

The virtual machines all have nic devices. QDIO type devices require 3 addresses: read, write and data. Nic devices are coupled to the guest lan VMRTSW. Hint: for linux cloning use the same nic address for all cloned linuxes.

Participants on vswitches use virtual nic devices.
OSA and QDIO Mode

- QDIO mode is a z series high speed and high volume data transfer mechanism
 - Initiated as an I/O but ...
 - Once started remains active
 - And does not use standard I/O instructions
- OSA in QDIO mode supports:
 - Layer 3: IP mode: forwards IP broadcasts and multicasts; uses IP destinations from the IP packet. Supports VLAN.
 - Layer 2: Ethernet mode: uses MAC addresses from the LAN frame. Used by z/VM vswitch and the linux QETH drivers. Support VLAN along with multicast, broadcast and all protocols.
- Guest lans support virtual QDIO mode.
Our Vswitch Network: osa devices

A vswitch has one set of OSA QDIO devices active with multiple stacks. Non-vswitch OSA use is one set of QDIO devices per adaptor.
Multiple LPAR configuration on the same subnet

LPAR “A”
- Linux .159
- VMRTSW 172.27.120.x
 - EC00-EC02

LPAR “B”
- Linux .179
- VMRTSW 172.27.120.x
 - EC03-EC05

Chpid EC type OSD shared by LPAR “A” and “B”
A Few Words on VSWITCH

- The VSWITCH table of MACs, IP addresses, and virtual stacks is maintained by CP.
- The controller machine does *not* have DEVICE/LINK statements for the vswitch OSA devices.
- The controller machine is not involved in moving packets.
- Controller machine is for management and recovery purposes.
- The OSA devices are automatically attached by CP to the controller machine when the VSWITCH is created.
 - One active set of OSA devices per vswitch.
- Virtual machines must be explicitly granted permission to join the vswitch.
 - Or access can be controlled by RACF.
Let’s take a look

- Vswitch will be defined to use two sets of devices: EC00-EC02 and EB00-EB02:
 - EC00-EC02 will become active; EB00-EB02 will be standby.
 - *No load balancing*
- CP will look for controller (VM TCP/IP stack machine):
 - Explicitly defined by CP command or SYSTEM CONFIG file statement
 - Or available machine (connected to *VSWITCH service)
- Will show two types of recovery:
 - Detaching EC00-EC02
 - Forcing off the active vswitch controller
- DEFINE VSWITCH is Class B
- DEFINE VSWITCH configuration file statement
- Guest lan user defines NIC with type QDIO
Defining the VSWITCH from MAINT

Create a vswitch called vmrtsw as a layer 3 using rdevices ec00-ec02 and eb00-eb02. Choose any available controller.

```
q ec00-ec02 eb00-eb02
OSA EC00 FREE , OSA EC01 FREE , OSA EC02 FREE , OSA EB00 FREE
OSA EB01 FREE , OSA EB02 FREE

define vswitch vmrtsw ip controller * rdev ec00 eb00
VSWITCH SYSTEM VMRTSW is created
HCPSWU2830I VSWITCH SYSTEM VMRTSW status is ready.
HCPSWU2830I TCPIPLX is VSWITCH controller.
OPERATOR: HCPSWU2830I VSWITCH SYSTEM VMRTSW status is ready.
OPERATOR: HCPSWU2830I TCPIPLX is VSWITCH controller.
```

```
q ec00-ec02 eb00-eb02
OSA EC00 ATTACHED TO TCPIPLX EC00
OSA EC01 ATTACHED TO TCPIPLX EC01
OSA EC02 ATTACHED TO TCPIPLX EC02
OSA EB00 ATTACHED TO TCPIPLX EB00
OSA EB01 ATTACHED TO TCPIPLX EB01
OSA EB02 ATTACHED TO TCPIPLX EB02
```
<table>
<thead>
<tr>
<th>Device</th>
<th>Type</th>
<th>Status</th>
<th>Priority</th>
<th>IUCVid</th>
<th>IPv4 Router Type</th>
<th>Arp Query Support</th>
<th>Net number</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSWITCHDEV</td>
<td>VSWITCH-IUCV</td>
<td>Connected</td>
<td>B</td>
<td>*VSWITCH</td>
<td>NonRouter</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMRTSWE00DEV</td>
<td>VSWITCH-OSD</td>
<td>Ready</td>
<td></td>
<td>EC00</td>
<td>NonRouter</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>VMRTSWE00LINK</td>
<td>QDIOETHERNET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMRTSWEB00DEV</td>
<td>VSWITCH-OSD</td>
<td>Inactive</td>
<td></td>
<td>EB00</td>
<td>NonRouter</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>VMRTSWEB00LINK</td>
<td>QDIOETHERNET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Controllers: TCPIPLX and TCPIPLZ

• In their PROFILE TCPIP’s this statement:

VSWITCH CONTROLLER ON

… but no need for HOME, GATEWAY, START statements … unless there are other adapters

• DIRECTORY statement required:
IUCV *VSWITCH MSGLIMIT 65535
Allow these virtual machines to join the vswitch guest lan (class B) ... or SYSTEM CONFIG statement

```
set vswitch vmrtsw grant lfor0001
Command complete

set vswitch vmrtsw grant lforxx93
Command complete

set vswitch vmrtsw grant tcpiply
Command complete
```
Ask which machines have access

query vswitch
 access
 VSWITCH SYSTEM VMRTSW Type: VSWITCH Connected: 3 Maxconn: INFINITE
 PERSISTENT RESTRICTED NONROUTER Accounting: OFF
 VLAN unaware
 State: Ready
 IPTTimeout: 5 QueueStorage: 8
 Portname: UNASSIGNED RDEV: EC00 Controller:
 TCPIPLZ VDEV: EC00
 Portname: UNASSIGNED RDEV: EB00 Controller: TCPIPLZ VDEV: EB00
 BACKUP
 Authorized userids:
 LFORXX93 LFOR0001 SYSTEM TCPIPLY
LFOR0001 runs a 2nd level VM system. It has a virtual nic defined at FFFC-FFFE. In the 2nd level this ‘real’ device is attached to 3rd level TCPIP machine. TCPIP drives this as an osa qdio device.
Definitions for Ifor0001

- First level directory:

 NICDEF FFFC TYPE QDIO DEVICES 3 LAN SYSTEM VMRTSW

- Second level ‘real’ devices:

 Q FFFC-FFFFE
 OSA FFFC ATTACHED TO TCPIP FFFC
 OSA FFFD ATTACHED TO TCPIP FFFD
 OSA FFFE ATTACHED TO TCPIP FFFE
PROFILE TCPIP

- **DEVICE** `DEVFFFC` OSD FFFC NONROUTER
- **LINK** `OSASERV` QDIOETHERNET `DEVFFFC` MTU 1500
- **HOME**
 - 172.27.120.156 `OSASERV`
- **GATEWAY**
 - 172.27.0.0 = `OSASERV` 1500 0.0.255.0 0.0.120.0
- **DEFAULTNET** 172.27.120.254 `OSASERV` 1500 0
- **START DEVFFFC**

SYSTEM DTCPARMS

- `:nick.TCPIP` : `type.server`
- `:class.stack`
- `:Attach.FFFC-FFFE`

SHARE Session 9124 All Rights Reserved VM RESOURCES LTD. 26
Lforxx93 Definitions

- **Directory:**

 NICDEF FFF0 TYPE QDIO DEVICES 3 MACID 01FF01 LAN SYSTEM VMRTSW

 Macid is optional. It is appended to the MACID prefix. The MACID prefix is set in the SYSTEM CONFIG file in the VMLAN statement (VMLAN MACPREFIX xxxxxx). Default is 020000. Used by layer 2 vswitch support.

- **Setup the card in the linux machine via yast or by hand**
Setup the card in the linux machine via yast or by hand

- Via yast: must have working network in order to use ssh client (such as putty from windows).
 - This is for SUSE SLESx
- Via 3270 (no network access to linux) can use line editor such as sed
 - Useful when working with cloned machine
1. In yast select network devices/network card

YaST @ lforxx93
Press F1 for Help

YaST Control Center

<table>
<thead>
<tr>
<th>Software</th>
<th>Network Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td></td>
</tr>
<tr>
<td>Network Devices</td>
<td></td>
</tr>
<tr>
<td>Network Services</td>
<td></td>
</tr>
<tr>
<td>Security and Users</td>
<td></td>
</tr>
<tr>
<td>Misc</td>
<td></td>
</tr>
</tbody>
</table>

[Help] [Quit]
2. Choose the card you wish to configure; configure

Choose the card you wish to configure:

YaST @ forxx93

Network card setup

Configure your network card here.
Adding a network card:
Choose a network card from the list of detected network cards. If your network card was not autodetected, select Other (not detected) and press Configure. Editing or Deleting:
If you press Change, an additional dialog [Back] [Abort] [Finish]

Press F1 for Help

Network cards configuration
Network cards to configure are:
Available
IBM OSA Express Ethernet card (0.0.e706)
IBM OSA Express Ethernet card (0.0.eb00)
IBM OSA Express Ethernet card (0.0.fff0)
IBM IUCV
Other (not detected)

[Configure...]

Already configured devices:
* Hipersockets Interface (HSI) Configured with Address 10.1.2.100
* IBM OSA Express Ethernet card (0.0.88f0) Configured with Address 0.0.0.0

[Change...]
3. Configure the card; choose next (then in the next screens click finish then quit)
4. Choose finish; then quit yast

```
YaST @ lforxx93
Press F1 for Help

| Network card setup | Configure your network card here. Adding a network card: Choose a network card from the list of detected network cards. If your network card was not autodetected, select Other (not detected) then press Configure. Editing or Deleting: If you press Change, an additional dialog in which to change the configuration opens. | Network cards to configure Available
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IBM OSA Express Ethernet card (0.0.e705)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBM OSA Express Ethernet card (0.0.e706)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBM OSA Express Ethernet card (0.0.eb00)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBM IUCV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other (not detected)</td>
<td></td>
</tr>
</tbody>
</table>

Already configured devices:
* Hipersockets Interface (HSI) Configured with Address 10.1.2.100
* IBM OSA Express Ethernet card (0.0.88f0) Configured with Address 0.0.0.0
* IBM OSA Express Ethernet card (0.0.e704) Configured with Address 172.27.120.155
* IBM OSA Express Ethernet card (0.0.fFfF) Configured with Address 172.27.120.159

[Finish] [Back] [Change...] [Abort]
```
4. Choose finish; then quit yast
Configuring by hand

- Configuration files for network interfaces stored in `/etc/sysconfig/network` in SUSE SLES9.
- Use `sed` or other line editor to change files.
- IBM device configurations stored in “online control block” file system `/sys`.
- In the example, commands are done from the `/etc/sysconfig/network` directory.
Cloned machine has same IP as the master ... (just after cloning):

```
# cat ifcfg-qeth-bus-ccw-0.0.fff0
BOOTPROTO='static'
BROADCAST='172.27.120.255'
IPADDR='172.27.120.155'
MTU=''
NETMASK='255.255.255.0'
NETWORK='172.27.120.0'
REMOTE_IPADDR=''
STARTMODE='onboot'
UNIQUE='3IPn.FOqOuhDmSR4'
_nm_name='qeth-bus-ccw-0.0.fff0'
```

A cautionary tale: take a copy!!

```
cp ifcfg-qeth-bus-ccw-0.0.fff0
original.ifcfg-qeth-bus-ccw-0.0.fff0
```
Using sed “select lines with 155 and change to 159” in all lines and redirect output to new file temp:

```
sed s/155/159/g ifcfg-qeth-bus-ccw-0.0.fff0 > temp
sed s/155/159/g ifcfg-qeth-bus-ccw-0.0.fff0 < work # sed s/155/159/g ifcfg-qeth-b us-ccw-0.0.fff0 > temp
```

Display the file just created by output redirection:

```
# cat temp
cat temp
BOOTPROTO='static'
BROADCAST='172.27.120.255'
IPADDR='172.27.120.159'
MTU=''
NETMASK='255.255.255.0'
NETWORK='172.27.120.0'
REMOTE_IPADDR=''
STARTMODE='onboot'
UNIQUE='3IPn.FOqOuhDmSR4'
_nm_name='qeth-bus-ccw-0.0.fff0'
```


Rename the file:

```bash
# mv temp ifcfg-qeth-bus-ccw-0.0.fff0
mv temp ifcfg-qeth-bus-ccw-0.0.fff0
```

Display the configuration file:

```bash
# cat ifcfg-qeth-bus-ccw-0.0.fff0
cat ifcfg-qeth-bus-ccw-0.0.fff0
BOOTPROTO='static'
BROADCAST='172.27.120.255'
IPADDR='172.27.120.159'
MTU='
NETMASK='255.255.255.0'
NETWORK='172.27.120.0'
REMOTE_IPADDR='
STARTMODE='onboot'
UNIQUE='3IpN.FoqOuhDmSR4'
_nm_name='qeth-bus-ccw-0.0.fff0'
```
Still had the old configuration; needs to be changed

```bash
# ifconfig eth0
ifconfig eth0
eth0        Link encap:Ethernet  HWaddr 02:00:00:01:FF:01
            inet addr:172.27.120.155  Bcast:172.27.120.255
            Mask:255.255.255.0
            inet6 addr: fe80::200:0:100:5/64 Scope:Link
            UP BROADCAST RUNNING MULTICAST  MTU:1492  Metric:1
            errors:0 dropped:0 overruns:0 frame:0
            TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
            collisions:0 txqueuelen:1000
            RX bytes:2632 (2.5 Kb) TX bytes:652 (652.0 b)
```

Take the link down

```bash
# ifdown eth0
ifdown eth0
eth0
  eth0  configuration: qeth-bus-ccw-0.0.fff0
```
bring the link up

```bash
# ifup eth0
ifup eth0
  eth0
  eth0    configuration: qeth-bus-ccw-0.0.fff0
```

Interface is now up

```bash
# ifconfig eth0
ifconfig eth0
  eth0    Link encap:Ethernet  HWaddr 02:00:00:01:FF:01
    inet addr:172.27.120.159  Bcast:172.27.120.255
    Mask:255.255.255.0
    inet6 addr: fe80::200:0:100:5/64 Scope:Link
    UP BROADCAST RUNNING MULTICAST  MTU:1492  Metric:1
    RX packets:24 errors:0 dropped:0 overruns:0 frame:0
    TX packets:13 errors:0 dropped:0 overruns:0 carrier:0
    collisions:0 txqueue len:1000
    RX bytes:3402 (3.3 Kb)  TX bytes:1422 (1.3 Kb)
```
Startup Messages

```console
linux version 2.6.5-7.97-s390x (geeko@buildhost) (gcc version 3.3.3 (S Use linux)
 ) #1 SMP Fri Jul 2 14:21:59 UTC 2004
We are running under VM (64 bit mode)
:
qeth: loading qeth S/390 OSA-Express driver ($Revision: 1.77.2.20 $/$Revision: 1
.98.2.11 $/$Revision: 1.27.2.5 $/$Revision: 1.8.2.2
$/Revision: 1.7.2.1 $/$Rev
sion: 1.5.2.4 $/$Revision: 1.19.2.7 $ :IPv6 :VLAN)
qeth: Device 0.0.fffc/0.0.ffff/0.0.fffe is a Guest LAN QDIO card (level: V511)
with link type GuestLAN QDIO (portname:)
qeth: IP fragmentation not supported on eth0
qeth: VLAN enabled
qeth: Multicast enabled
qeth: IPV6 enabled
qeth: Broadcast enabled
```
Definitions for TCPIPLY

Directory statement for TCPIPLY:

NICDEF 0800 TYPE QDIO DEVICES 3 LAN SYSTEM VMRTSW

PROFILE TCPIP

DEVICE DEV@0800 OSD 0800 NONROUTER
LINK OSASERV QDIOETHERNET DEV@0800 MTU 1500
HOME
172.27.120.158 OSASERV
GATEWAY
172.27.0.0 = OSASERV 1500 0.0.255.0 0.0.120.0
DEFAULTNET 172.27.120.254 OSASERV 1500 0
START DEV@0800
At this point:

- VSWITCH VMRTSW defined
- 3 virtual machines permitted to use it
- Stacks connected to VSWITCH on virtual nics:
 - LFOR0001: 2nd level VM system with TCPIP machine at 172.27.120.156
 - LFORXX93 linux machine at 172.27.120.159
 - TCPIPLY VM TCPIP stack machine at 172.27.120.158
- Additional stack machine sharing OSA port at IP address 172.27.120.155
- Gateway physical server at 172.27.120.254
- Two controller machines, TCPIPLZ and TCPIPLX
Will Now Show …

- Network management commands
 - netstat
 - ping
 - Failover:
 - Device removal
 - Controller failure
 - During recovery two applications active: FTP (large transfer) and TELNET. Both applications remained available during and after recovery processing.
Before tcpip in lfor0001 joins

```bash
netstat arp all tcp tcpiplx
```

VM TCP/IP Netstat Level 530
Querying ARP cache for address *
Adapter-maintained data as of: 07/07/05 14:24:41

OSA mac

```
Link VMRTSWE00LINC : QDIOETHERNET: 00025509E705 IP: 172.27.120.155
Link VMRTSWE00LINC : QDIOETHERNET: 00025509E705 IP: 172.27.120.158
Link VMRTSWE00LINC : QDIOETHERNET: 00025509E705 IP: 172.27.120.159
Link VMRTSWE00LINC : QDIOETHERNET: 080020E46479 IP: 172.27.120.254
```

Query the arp cache of the controller machine

Physical switch mac
After LFOR0001 joins

netstat arp all tcp tcpiplx
VM TCP/IP Netstat Level 530
Querying ARP cache for address *
Adapter-maintained data as of: 07/07/05 14:35:01
Link VMRTSWEC00LINK : QDIOETHERNET: 00025509E705 IP: 172.27.120.155
Link VMRTSWEC00LINK : QDIOETHERNET: 00025509E705 IP: 172.27.120.156
Link VMRTSWEC00LINK : QDIOETHERNET: 00025509E705 IP: 172.27.120.158
Link VMRTSWEC00LINK : QDIOETHERNET: 00025509E705 IP: 172.27.120.159
Link VMRTSWEC00LINK : QDIOETHERNET: 080020E46479 IP: 172.27.120.254
First level pings from TCPIPLY

<table>
<thead>
<tr>
<th>ping 172.27.120.156</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ping Level 530: Pinging host 172.27.120.156.</td>
</tr>
<tr>
<td>Enter 'HX' followed by 'BEGIN' to interrupt.</td>
</tr>
<tr>
<td>PING: Ping #1 response took 0.002 seconds. Successes so far 1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ping 172.27.120.158</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ping Level 530: Pinging host 172.27.120.158.</td>
</tr>
<tr>
<td>Enter 'HX' followed by 'BEGIN' to interrupt.</td>
</tr>
<tr>
<td>PING: Ping #1 response took 0.001 seconds. Successes so far 1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ping 172.27.120.159</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ping Level 530: Pinging host 172.27.120.159.</td>
</tr>
<tr>
<td>Enter 'HX' followed by 'BEGIN' to interrupt.</td>
</tr>
<tr>
<td>PING: Ping #1 response took 0.001 seconds. Successes so far 1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ping 172.27.120.155</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ping Level 530: Pinging host 172.27.120.155.</td>
</tr>
<tr>
<td>Enter 'HX' followed by 'BEGIN' to interrupt.</td>
</tr>
<tr>
<td>PING: Ping #1 response took 0.001 seconds. Successes so far 1.</td>
</tr>
</tbody>
</table>
Second level pings from TCPIP in LFOR0001

ping 172.27.120.156
Ping Level 530: Pinging host 172.27.120.156.
 Enter 'HX' followed by 'BEGIN' to interrupt.
PING: Ping #1 response took 0.001 seconds. Successes so far 1.

ping 172.27.120.158
Ping Level 530: Pinging host 172.27.120.158.
 Enter 'HX' followed by 'BEGIN' to interrupt.
PING: Ping #1 response took 0.001 seconds. Successes so far 1.

ping 172.27.120.254
Ping Level 530: Pinging host 172.27.120.254.
 Enter 'HX' followed by 'BEGIN' to interrupt.
PING: Ping #1 response took 0.001 seconds. Successes so far 1.

ping 172.27.120.155
Ping Level 530: Pinging host 172.27.120.155.
 Enter 'HX' followed by 'BEGIN' to interrupt.
PING: Ping #1 response took 0.001 seconds. Successes so far 1.
linux pings 1 of 2

```bash
lforxx93:~ # ping -c 1 172.27.120.254
PING 172.27.120.156 (172.27.120.254) 56(84) bytes of data.
64 bytes from 172.27.120.254: icmp_seq=1 ttl=60 time=0.588 ms

--- 172.27.120.254 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.588/0.588/0.588/0.000 ms

lforxx93:~ # ping -c 1 172.27.120.158
PING 172.27.120.158 (172.27.120.158) 56(84) bytes of data.
64 bytes from 172.27.120.158: icmp_seq=1 ttl=60 time=0.225 ms

--- 172.27.120.158 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.225/0.225/0.225/0.000 ms
```
ping -c 1 172.27.120.159
PING 172.27.120.159 (172.27.120.159) 56(84) bytes of data.
64 bytes from 172.27.120.159: icmp_seq=1 ttl=64 time=0.064 ms

--- 172.27.120.159 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.064/0.064/0.064/0.000 ms

ping -c 1 172.27.120.155
PING 172.27.120.155 (172.27.120.155) 56(84) bytes of data.
64 bytes from 172.27.120.155: icmp_seq=1 ttl=60 time=0.664 ms

--- 172.27.120.155 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.664/0.664/0.664/0.000 ms
QUERY VSWITCH VMRTSW DETAILS

<table>
<thead>
<tr>
<th>VSWITCH SYSTEM VMRTSW</th>
<th>Type: VSWITCH Connected: 3</th>
<th>Maxconn: INFINITE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PERSISTENT</td>
<td>RESTRICTED</td>
</tr>
<tr>
<td></td>
<td>NONROUTER</td>
<td>Accounting: OFF</td>
</tr>
<tr>
<td>VLAN Unaware</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State: Ready</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPTimeout: 5</td>
<td>QueueStorage: 8</td>
<td></td>
</tr>
<tr>
<td>Portname: UNASSIGNED</td>
<td>RDEV: EC00</td>
<td>Controller: TCPIPLZ</td>
</tr>
<tr>
<td></td>
<td>VDEV: EC00</td>
<td></td>
</tr>
<tr>
<td>Portname: UNASSIGNED</td>
<td>RDEV: EB00</td>
<td>Controller: TCPIPLZ</td>
</tr>
<tr>
<td></td>
<td>VDEV: EB00 BACKUP</td>
<td></td>
</tr>
</tbody>
</table>

VSWITCH Connection:		
RX Packets: 8878	Discarded: 4	Errors: 0
TX Packets: 9215	Discarded: 0	Errors: 0
RX Bytes: 800654	TX Bytes: 1911124	
239.255.255.253	MAC: 01-00-5E-7F-FF-FD	
FFFE::1	MAC: 33-33-00-00-00-01 Local	
FFFE::1:FFFFD:FFFFE	MAC: 33-33-FF-01-FF-02 Local	

1 of 3 ...
QUERY VSWITCH VMRTSW DETAILS

<table>
<thead>
<tr>
<th>Adapter Owner: LFORXX93</th>
<th>NIC: FFFC</th>
<th>Name: UNASSIGNED</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX Packets: 568</td>
<td>Discarded: 0</td>
<td>Errors: 0</td>
</tr>
<tr>
<td>TX Packets: 276</td>
<td>Discarded: 0</td>
<td>Errors: 0</td>
</tr>
<tr>
<td>RX Bytes: 74526</td>
<td>TX Bytes: 41076</td>
<td></td>
</tr>
</tbody>
</table>

Device: FFFE **Unit:** 002 **Role:** DATA
Options: Broadcast Multicast IPv6 IPv4 VLAN

Unicast IP Addresses:
- 172.27.120.159
- FE80::200:0:201:FF02

Multicast IP Addresses:
- 224.0.0.1
- 224.0.0.251

2 of 3 ...
QUERY VSWITCH VMRTSW DETAILS

3 of 3 ...

:
Adapter Owner: LFOR0001 NIC: FFFC Name: UNASSIGNED
RX Packets: 135 Discarded: 0 Errors: 0
TX Packets: 49 Discarded: 0 Errors: 0
RX Bytes: 33273 TX Bytes: 6902
Device: FFFE Unit: 002 Role: DATA
Options: Broadcast Multicast IPv4 VLAN
unicast IP Addresses:
 172.27.120.156 MAC: 02-00-00-00-00-04
Multicast IP Addresses:
 224.0.0.1 MAC: 01-00-5E-00-00-01
Adapter Owner: TCPIPLY NIC: 0800 Name: UNASSIGNED
RX Packets: 126 Discarded: 0 Errors: 0
TX Packets: 31 Discarded: 0 Errors: 0
RX Bytes: 31768 TX Bytes: 5210
Device: 0802 Unit: 002 Role: DATA
Options: Broadcast Multicast IPv4 VLAN
Unicast IP Addresses:
 172.27.120.158 MAC: 02-00-00-00-00-02
 224.0.0.1 MAC: 01-00-5E-00-00-01
Before removing the rdevs

```
q ec00-ec02 eb00-eb02
OSA    EC00   ATTACHED TO TCP/IP|LX   EC00
OSA    EC01   ATTACHED TO TCP/IP|LX   EC01
OSA    EC02   ATTACHED TO TCP/IP|LX   EC02
OSA    EB00   ATTACHED TO TCP/IP|LX   EB00
OSA    EB01   ATTACHED TO TCP/IP|LX   EB01
OSA    EB02   ATTACHED TO TCP/IP|LX   EB02
q vswitch vmrtsw
VSWITCH SYSTEM VMRTSW   Type: VSWITCH Connected: 4   Maxconn: INFINITE
   PERSISTENT   RESTRICTED   NONROUTER   Accounting: OFF
   VLAN Unaware
   State: Ready
   IPTTimeout: 5   QueueStorage: 8
   Portname: UNASSIGNED  RDEV: EC00  Controller: TCP/IP|LX  VDEV: EC00
   Portname: UNASSIGNED  RDEV: EB00  Controller: TCP/IP|LX  VDEV: EB00
   BACKUP
```
Remove the Rdevs

```
det ec00-ec02 tcpiplx
TCPIPLX : EC00-EC02 DETACHED BY TCPMAINT
EC00-EC02 DETACHED TCPIPLX
TCPIPLX : 17:19:22 DTCOSD082E VSWITCH-OSD shutting down:
HCPSWU2830I VSWITCH SYSTEM VMRTSW status is devices attached.
HCPSWU2830I TCPIPLX is VSWITCH controller.
HCPSWU2830I VSWITCH SYSTEM VMRTSW status is in error recovery.
HCPSWU2830I TCPIPLX is new VSWITCH controller.
```

Also have performed a cable pull. Recovery proceeds similar to detaching the real devices
TCPIPLX Recovery Messages 1 of 2

<table>
<thead>
<tr>
<th>Time</th>
<th>Operation</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:19:22</td>
<td>TCPIPLX</td>
<td>Device VMRTSWEC00DEV:</td>
</tr>
<tr>
<td>17:19:22</td>
<td>DTCPRI385I</td>
<td>Type: VSWITCH-OSD, Status: Ready</td>
</tr>
<tr>
<td>17:19:22</td>
<td>DTCPRI386I</td>
<td>Envelope queue size: 0</td>
</tr>
<tr>
<td>17:19:22</td>
<td>DTCPRI387I</td>
<td>Address: EC00</td>
</tr>
<tr>
<td>17:19:22</td>
<td>DTCQDI001I</td>
<td>QDIO device VMRTSWEC00DEV device number EC02:</td>
</tr>
<tr>
<td>17:19:22</td>
<td>DTCQDI007I</td>
<td>Disable for QDIO data transfers</td>
</tr>
<tr>
<td>17:19:22</td>
<td>DTCOSD361I</td>
<td>VSWITCH-OSD link removed for VMRTSWEC00DEV</td>
</tr>
<tr>
<td>17:19:22</td>
<td>DTCOSD080I</td>
<td>VSWITCH-OSD initializing:</td>
</tr>
<tr>
<td>17:19:22</td>
<td>DTCPRI385I</td>
<td>Device VMRTSWEB00DEV:</td>
</tr>
<tr>
<td>17:19:22</td>
<td>DTCPRI386I</td>
<td>Type: VSWITCH-OSD, Status: Not started</td>
</tr>
<tr>
<td>17:19:22</td>
<td>DTCPRI387I</td>
<td>Envelope queue size: 0</td>
</tr>
<tr>
<td>17:19:22</td>
<td>DTCPRI388I</td>
<td>Address: EB00</td>
</tr>
<tr>
<td>17:19:22</td>
<td>DTCQDI001I</td>
<td>QDIO device VMRTSWEB00DEV dev number EB02:</td>
</tr>
<tr>
<td>17:19:22</td>
<td>DTCQDI007I</td>
<td>Enabled for QDIO data transfers</td>
</tr>
</tbody>
</table>
TCPIPLX Recovery Messages 2 of 2

TCPIPLX : 17:19:22 DTCOSD238I ToOs: IPV4 multicast support enabled for VMRTSWEB00DEV
TCPIPLX : 17:19:22 DTCOSD319I ProcessSetArpCache: Supported for device VMRTSWEB00DEV
TCPIPLX : 17:19:22 DTCOSD341I Obtained MAC address 000255899D45 for device VMRTSWEB00DEV
TCPIPLX : 17:19:22 DTCOSD238I ToOs: IPV6 multicast support enabled for VMRTSWEB00DEV
TCPIPLZ : 17:19:22 DTCOSD360I VSWITCH-OSD link added for VMRTSWEB00DEV
HCPSWU2830I VSWITCH SYSTEM VMRTSW status is ready.
HCPSWU2830I TCPIPLX is VSWITCH controller.
TCPIPLX : 17:19:26 DTCOSD246I VSWITCH-OSD device VMRTSWEB00DEV: Assigned IPv4 address 172.27.120.159
TCPIPLX : 17:19:26 DTCOSD246I VSWITCH-OSD device VMRTSWEB00DEV: Assigned IPv4 address 172.27.120.156
TCPIPLX : 17:19:26 DTCOSD246I VSWITCH-OSD device VMRTSWEB00DEV: Assigned IPv4 address 172.27.120.158
Kill Controller Machine

q controller
Controller TCPIPLX Available: YES VDEV Range: * Level 510
 Capability: IP ETHERNET VLAN_ARP
 SYSTEM VMRTSW Primary Controller: *
 SYSTEM VMRTSW Backup Controller: *

force tcpiplx

USER DSC LOGOFF AS TCPIPLX USERS = 16 FORCED BY TCPMNLAB
HCPSWU2843E The path was severed for TCP/IP Controller TCPIPLX.
HCPSWU2843E It was managing device EC00 for VSWITCH SYSTEM VMRTSW.
HCPSWU2843E The path was severed for TCP/IP Controller TCPIPLX.
HCPSWU2843E It was managing device EB00 for VSWITCH SYSTEM VMRTSW.
Recovery controller messages 1 of 2

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Device Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCPIPLZ : 17:22:14</td>
<td>DTCOSD360I</td>
<td>VSWITCH-OSD link added for VMRTSVEC00DEV</td>
</tr>
<tr>
<td>TCPIPLZ : 17:22:14</td>
<td>DTCOSD080I</td>
<td>VSWITCH-OSD initializing:</td>
</tr>
<tr>
<td>TCPIPLZ : 17:22:14</td>
<td>DTCPRI385I</td>
<td>Device VMRTSVEC00DEV:</td>
</tr>
<tr>
<td>TCPIPLZ : 17:22:14</td>
<td>DTCPRI386I</td>
<td>Type: VSWITCH-OSD, Status: Not started</td>
</tr>
<tr>
<td>TCPIPLZ : 17:22:14</td>
<td>DTCPRI387I</td>
<td>Envelope queue size: 0</td>
</tr>
<tr>
<td>TCPIPLZ : 17:22:14</td>
<td>DTCPRI388I</td>
<td>Address: EC00</td>
</tr>
<tr>
<td>TCPIPLZ : 17:22:14</td>
<td>DTCQDIO001I</td>
<td>QDIO device VMRTSVEC00DEV device number EC02:</td>
</tr>
<tr>
<td>TCPIPLZ : 17:22:14</td>
<td>DTCQDIO007I</td>
<td>Enabled for QDIO data transfers</td>
</tr>
<tr>
<td>TCPIPLZ : 17:22:14</td>
<td>DTCOSD238I</td>
<td>ToOsd: IPv4 multicast support enabled for VMRTSVEC00DEV</td>
</tr>
<tr>
<td>TCPIPLZ : 17:22:14</td>
<td>DTCOSD319I</td>
<td>ProcessSetArpCache: Supported for device VMRTSVEC00DEV</td>
</tr>
<tr>
<td>TCPIPLZ : 17:22:14</td>
<td>DTCOSD341I</td>
<td>Obtained MAC address 00025509E705 for device VMRTSVEC00DEV</td>
</tr>
<tr>
<td>TCPIPLZ : 17:22:14</td>
<td>DTCOSD238I</td>
<td>ToOsd: IPv6 multicast support enabled for VMRTSVEC00DEV</td>
</tr>
</tbody>
</table>
Recovery controller messages 2 of 2

HCPSWU2830I VSWITCH SYSTEM VMRTSW status is ready.

HCPSWU2830I TCPIPLZ is VSWITCH controller.

TCPIPLZ : 17:22:14 DTCOSD360I VSWITCH-OSD link added for VMRTSWEC00DEV

TCPIPLZ : 17:22:18 DTCOSD246I VSWITCH-OSD device VMRTSWEC00DEV:
 Assigned IPv4 address 172.27.120.159

TCPIPLZ : 17:22:18 DTCOSD246I VSWITCH-OSD device VMRTSWEC00DEV:
 Assigned IPv4 address 172.27.120.156

TCPIPLZ : 17:22:18 DTCOSD246I VSWITCH-OSD device VMRTSWEC00DEV:
 Assigned IPv4 address 172.27.120.158
Additional Documentation

- REDP-3719-00 linux on IBM zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4
- SC24-6080-00 z/VM V5R3.0 Connectivity Guide chapter 2 and more
- SC24-6125-00 z/VM V5R3.0 TCP/IP Planning and Customization
- GC24-6102 z/VM 5.3 Getting Started with Linux on zSeries
- SC33-8289-01 linux on system z/9 and z/series Device Drivers, Features, and Command
Penultimate thoughts

- Recovery based on CP artifacts as opposed to, say, VIPA methods.
- Extends existing network topologies horizontally.
- No need for additional subnets once you transcend cultural barriers with network administrator.
- Ideally suited to linux virtual machine environments.
- Use the IBM supplied controller machines DTCVSW1 and DTCVSW2.
Final Thoughts

- Wow!
- Recovery of both failures took just a few seconds.
- VSWITCHes can also support VLANs – not discussed today.
- Recommended approach to linux on z/VM networks.
- Remember: CP manages the devices and the switch table.