
IBM Systems and Technology Group

Session 9211- © 2003 IBM Corporation

IBM Systems and Technology Group

© 2006 IBM Corporation

Linux for System z
Goody Bag - BOF

Session 9239 - August,2008
Mark Ver
Test and Integration Center for Linux - markver@us.ibm.com

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Trademarks

The following are trademarks of the International Business Machines Corporation in the United
States and/or other countries.

ECKD
ESCON*
FICON*
Hipersockets
IBM*
IBM eServer
System z
z/OS*
z/VM*
zSeries*

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.
Intel ® is a registered trademark of the Intel Corporation in the United States, other countries or both.
Linux ® is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Penguin (Tux) compliments of Larry Ewing (lewing@isc.tamu.edu) and The GIMP.
Red Hat ® is a registered trademark of Red Hat, Inc. in the United States, other countries or both
SUSE ® is a registered trademark of Novell, Inc. in the United States, other countries or both
UNIX ® is a registered trademark of The Open Group in the United States and other countries

* All other products may be trademarks or registered trademarks of their respective companies.

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Contents

VLAN configuration

zFCP SCSI

OSA Layer2 option

DASD topics

Integrated ASCII Console

CMM

DCSS and xip

XPRAM

Misc

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

VLAN configuration

Example steps for manually bringing a VLAN interface online:
echo 0.0.0600,0.0.0601,0.0.0602 > /sys/bus/ccwgroup/drivers/qeth/group

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.0600/online

ifconfig eth0 up
modprobe 8021q

vconfig add eth0 670

ifconfig eth0.670 192.168.70.84 netmask 255.255.255.0 up

Removing IP address for the base device:
Ip addr del 192.168.70.84 dev eth0

Alternate names for the VLAN interface
VLAN_PLUS_VID, VLAN_PLUS_VID_NO_PAD, DEV_PLUS_VID, DEV_PLUS_VID_NO_PAD
(default)

vconfig set_name_type VLAN_PLUS_VID_NO_PAD
ifconfig vlan670 192.168.70.84 netmask 255.255.255.0 up

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

VLAN configuration

Example of checking your VLAN settings:
ls /proc/net/vlan
config vlan670
#

cat /proc/net/vlan/config
VLAN Dev name | VLAN ID
Name-Type: VLAN_NAME_TYPE_PLUS_VID_NO_PAD
vlan670 | 670 | eth0
#

cat /proc/net/vlan/vlan670
vlan670 VID: 670 REORDER_HDR: 1 dev->priv_flags: 1
 total frames received 1589
 total bytes received 126500
 Broadcast/Multicast Rcvd 0

 total frames transmitted 1170
 total bytes transmitted 164317
 total headroom inc 0
 total encap on xmit 0
Device: eth0
INGRESS priority mappings: 0:0 1:0 2:0 3:0 4:0 5:0 6:0 7:0
EGRESSS priority Mappings:
#

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

VLAN configuration

SLES Configuration Example:
Base device:

cat /etc/sysconfig/network/ifcfg-qeth-bus-ccw-0.0.0600

STARTMODE='auto'

_nm_name='qeth-bus-ccw-0.0.0600'

#

VLAN device:
cat /etc/sysconfig/network/ifcfg-vlan670

ETHERDEVICE=eth0

BOOTPROTO='static'

UNIQUE=''

STARTMODE='auto'

IPADDR='192.168.70.84'

NETMASK='255.255.255.0'

NETWORK='192.168.70.0'

BROADCAST='192.168.70.255'

PREFIXLEN=''

You have new mail in /var/mail/root

#

Notes:
The "ETHERDEVICE" parameter identifies the base device

SLES by default uses "vlan_plus_vid_no_pad" for the name type

The VLAN device is identified by the configuration file name ("vlan670" in the example)

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

VLAN configuration

Red Hat Configuration Example:
Base device:

cat /etc/sysconfig/network-scripts/ifcfg-eth0

IBM QETH

DEVICE=eth0

NETTYPE=qeth

ONBOOT=yes

PORTNAME=DT70

SUBCHANNELS=0.0.0600,0.0.0601,0.0.0602

#

VLAN device:
cat /etc/sysconfig/network-scripts/ifcfg-eth0.670

IBM VLAN

DEVICE=eth0.670

BOOTPROTO=static

IPADDR=192.168.70.178

NETMASK=255.255.255.0

ONBOOT=yes

VLAN=yes

#
Notes:

By default Red Hat Enterprise Linux uses the DEV_PLUS_VID_NO_PAD style naming (ex: eth0.670)

The naming style can be specified via the VLAN_NAME_TYPE parameter

The base device is identified by the first part of the VLAN device name or by the PHYSDEV parameter

VLAN configuration is only active if the configuration file specifies "VLAN=yes"

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

VLAN configuration

Checking for the configuration files that affect VLAN setup
SLES:

cd /etc/sysconfig/network/scripts
grep -il vlan *
convert_for_getconfig
functions
ifdown-802.1q
ifstatus-802.1q
ifup-802.1q
#

Examining a file:
egrep -i "vconfig|ip link" ifup-802.1q
if ! [-x /usr/sbin/vconfig]; then
 ip link set up dev $ETHERDEVICE
 /usr/sbin/vconfig set_name_type vlan_plus_vid_no_pad >/dev/null
 #/usr/sbin/vconfig set_bind_type per_kernel
 /usr/sbin/vconfig add $ETHERDEVICE $id >/dev/null
 /usr/sbin/vconfig rem $INTERFACE >/dev/null
#

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

VLAN configuration

Checking for the configuration files that affect VLAN setup
Red Hat:

cd /etc/sysconfig/network-scripts

grep -il vlan *

ifcfg-eth0.670

ifdown-eth

ifup

#

Example checking the contents:
egrep "vlan|vconfig" ifup

if [-x /sbin/vconfig -a "${VLAN}" = "yes" -a "$ISALIAS" = "no"]; then

 if [["${DEVICE}" =~ '^vlan[0-9]{1,4}?']]; then

 VID=$(echo "${DEVICE}" | LC_ALL=C sed 's/^vlan0*//')

 # PHYSDEV should be set in ifcfg-vlan* file

 if [! -d /proc/net/vlan]; then

 /sbin/vconfig set_name_type "$VLAN_NAME_TYPE" >/dev/null 2>&1 || {

 if [! -f /proc/net/vlan/${DEVICE}]; then

 /sbin/vconfig add ${PHYSDEV} ${VID} || {

 $"ERROR: could not add vlan ${VID} as ${DEVICE} on dev ${PHYSDEV}" &)&

 echo $"ERROR: could not add vlan ${VID} as ${DEVICE} on dev ${PHYSDEV}"

 if [-f /proc/net/vlan/${DEVICE}]; then

 /sbin/vconfig set_flag ${DEVICE} 1 1 || {

 "WARNING: vconfig not able to enable REORDER_HDR on ${DEVICE}" &)&

 /sbin/vconfig set_flag ${DEVICE} 1 0 || {

 $"WARNING: vconfig not able to disable REORDER_HDR on ${DEVICE}" &)&

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

VLAN configuration on z/VM

On LPAR VLAN configuration has to be done under Linux and the installation mechanism
for both Red Hat and SUSE on System z currently do not support setting up VLAN for the
network-based install. So LPAR systems cannot be installed directly if the only available
OSA device requires VLAN.

On z/VM, VLAN configuration can be done at the vswitch level (in which case no VLAN
configuration has to be done on Linux).

Example: query of a VLAN aware z/VM vswitch
Ready(00003); T=0.01/0.01 13:34:12
q vswitch 9dottag access
VSWITCH SYSTEM 9DOTTAG Type: VSWITCH Connected: 6 Maxconn: INFINITE
 PERSISTENT RESTRICTED NONROUTER Accounting: OFF
 VLAN Aware Default VLAN: 0001 Default Porttype: Access GVRP: Disabled
 Native VLAN: 0001
 MAC address: 02-06-00-00-00-01
 State: Ready
 IPTimeout: 5 QueueStorage: 8
 Authorized userids:
 AEM001 Porttype: Access VLAN: 0505
 AEM002 Porttype: Access VLAN: 0505
 AEM003 Porttype: Access VLAN: 0505
 AEM004 Porttype: Access VLAN: 0505
 INSTSRV1 Porttype: Access VLAN: 0505
 LAC0000 Porttype: Access VLAN: 0505
…
 LITRSMB1 Porttype: Access VLAN: 0505
 SYSTEM Porttype: Access VLAN: 0001
 RDEV: 0904 VDEV: 0904 Controller: DTCVSW2
Ready; T=0.01/0.01 13:37:27

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

VLAN configuration on z/VM

Example: Typical definition for a VLAN aware vswitch (VLAN tag 670):
z/VM 5.2
DEFINE VSWITCH PRVV70 RDEV 1100 VLAN 1 PORTTYPE ACCESS
SET VSWITCH PRVV70 GRANT LTIC0000 VLAN 670
SET VSWITCH PRVV70 GRANT LTIC0001 VLAN 670
...

z/VM 5.3
DEFINE VSWITCH PRVV70 RDEV 1100 VLAN 1 PORTTYPE ACCESS NATIVE 670

Example: Setup from the guest's point of view:
z/VM side setup:
DEFINE NIC 600 TYPE QDIO
COUPLE 600 TO SYSTEM PRVV70

Linux side setup (Red Hat Enterprise Linux) - no VLAN config needed:
[root@LAC0001 network-scripts]# cat ifcfg-eth0
IBM QETH
DEVICE=eth0
ARP=no
BOOTPROTO=static
IPADDR=192.168.70.171
NETMASK=255.255.255.0
NETTYPE=qeth
ONBOOT=yes
PORTNAME=DT70
SUBCHANNELS=0.0.0600,0.0.0601,0.0.0602

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

zFCP SCSI

Access SCSI disks over fibre channel attachments

A typical setup makes use of an FCP switch. FCP point-to-point topology is not supported
on all versions of the Linux distributions.

The format of the 16 digit fcp_lun numbers can vary depending on the storage hardware, ex:
Lun on ESS: 0x5734000000000000

Lun on DS8000: 0x4057403400000000

Modules needed: qdio, scsi_mod, scsi_transport_fc, zfcp, sd_mod(disk)/st(tape)

Example manual setup:
modprobe zfcp
modprobe sd_mod
cd /sys/bus/ccw/drivers/zfcp
echo 1 > 0.0.a310/online
echo 0x5005076300ccafc4 > 0.0.a310/port_add
echo 0x572a000000000000 > 0.0.a310/0x5005076300ccafc4/unit_add

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Configuring zFCP SCSI on SUSE Linux

Each FCP device will have its own configuration file: /etc/sysconfig/hardware/hwcfg-zfcp-
bus-ccw-0.0.xxxx

The wwpn:lun mapping is defined with the ZFCP_LUNS parameter
Ex.

ZFCP_LUNS=“

0x5005076300ccafc4:0x5735000000000000

0x5005076300ceafc4:0x5735000000000000"

Use zfcp_disk_configure to bring individual disks online
zfcp_disk_configure 0.0.0100 0x5005076300c1afc4 0x572a000000000000 1

You can also use yast

By default SUSE Linux has device files for /dev/sda through /dev/sdz

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Configuring zFCP SCSI on SUSE Linux

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Configuring zFCP SCSI on SUSE Linux

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Configuring zFCP SCSI on Red Hat Enterprise Linux

zFCP SCSI is set up in /etc/zfcp.conf
Ex.

0.0.a210 0x00 0x5005076300c2afc4 0x01 0x572c000000000000

0.0.a210 0x00 0x5005076300c2afc4 0x02 0x572d000000000000

If you want the FCP devices to be available on boot up you need to run mkinitrd to get the
configuration and needed modules into the initrd. Then you need to run zipl to pick up the
new initrd and use it during boot up.

Ex.

cd /boot

mkinitrd -v --with=zfcp --with=sd_mod initrd.new `uname -r`

- rename initrd.new as needed to match ramdisk entry in /etc/zipl.conf …

zipl -V

If you want to enable for current boot up, just run /sbin/zfcpconf.sh

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Displaying zfcp scsi info

Tools:
lszfcp (from s390-tools or s390utils package)

lszfcp -D

0.0.0100/0x5005076300ccafc4/0x572b000000000000 0:0:0:0
0.0.0100/0x5005076300ccafc4/0x572a000000000000 0:0:0:1

lsscsi (from scsi or lsscsi packages)
lsscsi

[0:0:0:0] disk IBM 2105800 .115 /dev/sda

[0:0:0:1] disk IBM 2105800 .115 /dev/sdb

sysfs:

cd /sys/bus/scsi/devices/0\:0\:0\:0
echo $(cat hba_id wwpn fcp_lun) $(basename $(readlink block*))

0.0.0100 0x5005076300ccafc4 0x572b000000000000 sda

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Displaying zfcp scsi info

The san_disc tool
A discovery tool for Fibre Channel SAN

Available on SLES

Makes use of the zfcp_hbaapi driver
Example:
rapdistro7:~ # modprobe -q zfcp_hbaapi
rapdistro7:~ # san_disc -c HBA_LIST
Number of Adapters: 6
No. Port WWN Node WWN SerialNumber Busid
1 (adapter unavailable)
2 (adapter unavailable)
3 000000000000000000 0x5005076400c4d905 0.0.a202
...
rapdistro7:~ #
rapdistro7:~ # san_disc -a 3 -V -c PORT_LIST
No. Port WWN Node WWN DID Type AssociatedType
 1 0x5005076300c1afc4 0x5005076300c0afc4 0xa90000 N_Port Storage subsystem
 ..
11 0x5005076300c8afc4 0x5005076300c0afc4 0xa90039 N_Port Storage subsystem
...
rapdistro7:~ # san_disc -a 3 -p 0x5005076300c8afc4 -c REPORT_LUNS
 Number of LUNs: 224
 No. LUN
 1 0x5400000000000000
 2 0x5401000000000000
...
 92 0x5523000000000000
...
rapdistro7:~ # lszfcp -D
0.0.a202/0x5005076300c8afc4/0x5523000000000000 0:0:0:21795
rapdistro7:~ #

Used by YaST (SLES-10 SP2, SLES-9 SP4) to give selection lists for selecting WWPN and LUN

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Disabling a scsi device

Manually disabling a scsi device from current configuration

echo 1 > /sys/bus/scsi/devices/0:0:1:0/delete

echo 0x572a000000000000 > /sys/.bus/ccw/drivers/zfcp/0.0.a310/0x5005076300ccafc4/unit_remove

echo 0x5005076300ccafc4 > /sys/bus/ccw/drivers/zfcp/0.0.a310/port_remove

echo 0 > /sys/bus/ccw/drivers/zfcp/0.0.a310/online

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Other possible zfcp scsi topics

Multipathing
Fibre Channel Protocol Implementation Guide:

http://www.redbooks.ibm.com/abstracts/sg246344.html

Fibre Channel Protocol for Linux and z/VM on IBM System z:
 http://www.redbooks.ibm.com/abstracts/sg247266.html

Device Mapper Multipath tools:

http://christophe.varoqui.free.fr/wiki/wakka.php?wiki=UsageFile

SCSI IPL (FC9904)
How to use FC-attached SCSI devices with Linux on System z

http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/docu/l26cts02.pdf

Using zfcp scsi for doing a stand-alone dump
Using the dump tools

http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/docu/l26cdt01.pdf

http://www.redbooks.ibm.com/abstracts/sg246344.html
http://www.redbooks.ibm.com/abstracts/sg247266.html

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

OSA Layer2 option

Allows the OSA card to pass packets intact with Link Layer Control (LLC) headers to and
from the Linux network stack.

Enables more compatible support for Linux applications that require or examine the LLC
headers (for example: tcpdump).

The first system to use a shared OSA device sets the mode. All sharing systems will have
to configure their network in the same mode.

When directly attached to an OSA device (as opposed to using a VSWITCH configured for
layer2 option) you need to specify a unique MAC for each Linux instance.

Turn the option on by setting the ccwgroup device’s “layer2” attribute to “1”
ex:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.0920/layer2

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

OSA Layer2 option

Configuration on SUSE, ex:
/etc/sysconfig/hardware/hwcfg-qeth-bus-ccw-0.0.0600:

QETH_LAYER2_SUPPORT=“1“

/etc/sysconfig/network/ifcfg-qeth-bus-ccw-0.0.0600

LLADDR="02:00:c0:a8:47:94"

Configuration on RedHat, ex:
/etc/sysconfig/network-scripts/ifcfg-eth0:

OPTIONS=“layer2=1”

MACADDR="02:00:C0:A8:47:7F"

Layer2 option during installation now available on SLES-10
SLES-10 base allows configuration for layer2 VSWITCH

SLES-10 SP1 allows configuration for VSWITCH and directly attached OSA device

Example prompts from a SLES-10 SP1 installation:

Enable OSI Layer 2 support?

1) Yes
2) No

> 1

MAC address>

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Understanding where DASD configuration resides

SUSE configuration locations:
Kernel parameter line “dasd=…” option.

Configured via parameters line in /etc/zipl.conf
Requires that you run “zipl” after making changes to /etc/zipl.conf

The initial ramdisk (initrd)
Within the “linuxrc” or “init” script in the ramdisk (dasd_configure call per disk)
The list is pulled by mkinitrd from currently configured dasd (see lsdasd output)
Run zipl to use a newly created initrd

/etc/sysconfig/hwcfg-dasd-bus-ccw-0.0.*
Example: hwcfg-dasd-bus-ccw-0.0.0201

RedHat configuration locations:
The initial ramdisk (initrd)

Within the “init” script in the ramdisk (insmod call to dasd_mod dasd=…)
The list is pulled by mkinitrd from the dasd_mod options in /etc/modprobe.conf

Example: options dasd_mod dasd=201
Run mkinitrd and then zipl after making changes to /etc/modprobe.conf

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Setting up Additional DASD on SUSE Linux

Default Procedure:

Bring desired DASD online
Use yast, dasd_configure, or chccwdev

Ex.

dasd_configure 0.0.0200 1 0

Run mkinitrd

Run zipl to pick up the new initrd
Ex.

zipl –V

Note: when performing an operation that removes old dasd and adds new dasd, it's
reommended that you first run similar steps to remove old dasd (dasd_configure/chccwdev
to remove dasd from driver list, run mkinitrd, run zipl) and reboot. Then the above steps can
be performed to add the new dasd. This way, if you reference the dasd by "device name"
(dasda,dasdb,etc) the new disks will continue to match the expected device names.

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Setting up Additional DASD on SUSE Linux

DASD in more depth

Configuration locations that affect the DASD list:
Kernel parameters (dasd=…) as configured in /etc/zipl.conf

The initrd (taken from the current dasd configuration when you run mkinitrd)

The hwcfg-dasd-* files located in /etc/sysconfig/hardware – these files are created when you use yast or
dasd_configure to bring the disks online.

The initrd setup is what SUSE Linux creates by default when you install SLES-9 from scratch.

The dasd= parameter has priority, overrides any configuration in the initrd, and is what you normally
see if you updated your system from SLES-8.

Ex. parameters = “dasd=200,201,202 root=/dev/dasda1 selinux=0 TERM=dumb”

Note: Currently on SLES-9 if you use yast or dasd_configure to bring the DASD online,,but fail to run
mkinitrd/zipl, the disks do come online during boot up. But they cannot be mounted via /etc/fstab.

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Setting up Additional DASD on Red Hat Enterprise Linux

Default Procedure:

Modify dasd module options in /etc/modprobe.conf to include your new dasd
Ex.

options dasd_mod dasd=200,201,202

Run mkinitrd to create an initrd that includes the modified module options
Ex.

cd /boot

mkinitrd -v initrd.new `uname –r`

Rename initrd.new as needed (make sure it matches ramdisk= entry for the current kernel in
/etc/zipl.conf).

Run zipl to make the changes effective on boot up:
Ex.

zipl -V

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Things to watch out for with SLES-10 SP1 DASD

SLES-10 SP1 by default references DASD according to the Device ID from the storage hardware, ex:
parameters = “root=/dev/disk/by-id/ccw-IBM.750000000M1881.2c23.1c-part1 TERM=dumb”

This affects systems that are using minidisks on the same physical device as well as cloning methods that rely on
flashcopy or DDR of DASD.

Can get around it by changing /etc/zipl.conf and /etc/fstab to use identifiers that do not care about the physical device
id, ex:

/dev/disk/by-path/ccw-0.0.0201-part1

/dev/dasda1

LABEL=rootfs

VM64273 - this z/VM APAR gives z/VM minidisks unique Device IDs. So this addresses the problem with multiple
minidisks on the same physical device. It does not relieve the problem with cloning systems that use Device ID
naming.

The method of choice can be specified during installation - just open up the “fstab options” when creating/editing
partitions:

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

DIAG access for disks

Simplifies IO instruction path for z/VM guests by letting z/VM handle the IO directly for the
guest OS (diagnose x’250’ instruction).

Supported for 64-bit on z/VM 5.2 and higher. Supported for 31-bit on all z/VM releases.

64-bit support requires CONFIG_DASD_DIAG option in the kernel. Early distro levels did
not provide dasd_diag_mod driver with the 64-bit system.

Requires CMS formatted or ldl formatted dasd (do not cdl format the dasd!).

Depending on the kernel level, may be susceptible to an old bug where DIAG against FBA
devices only worked correctly when the FBA device was CMS formatted with block size 512

Ex. Format 200 c (blksize 512

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

DIAG access for disks

DIAG manual set up example:
CMS format the dasd from VM:

format 200 k (blksize 512

Boot up linux, load drivers and enable a dasd for diag use:
modprobe dasd_fba_mod
modprobe dasd_diag_mod
echo 1 > /sys/bus/ccw/devices/0.0.0200/use_diag
echo 1 > /sys/bus/ccw/devices/0.0.0200/online

Check that disk is using the DIAG module for access:
Ex. # lsdasd

0.0.0201(ECKD) at (94: 0) is dasda : active at blocksize 4096, 601020
blocks, 2347 MB
0.0.0200(DIAG) at (94: 4) is dasdb : active at blocksize 512, 2048000
blocks, 1000 MB

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

DIAG access for SUSE

Using DIAG with SUSE on boot up:
Add the module “dasd_diag_mod” to the INITRD_MODULES list in /etc/sysconfig/kernel; then run
mkinitrd and zipl.

Set the DASD_USE_DIAG flag in the /etc/sysconfig/hardware/hwcfg-* file for the target dasd
device:

DASD_USE_DIAG="1“

If the hwcfg-* file doesn’t exist yet you can create the configuration file and set diag use all in one
go with the command “dasd_configure <ccwid> <online> <use_diag>”, ex:

dasd_configure 0.0.0200 1 1

Or you can just use yast2 gui -> hardware -> DASD panel to set DIAG on the selected devices.

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

DIAG access for Red Hat

Using DIAG with Red Hat Enterprise Linux on boot up:
Modify dasd_mod options in /etc/modprobe.conf to indicate “(diag)” for a range of devices in the
dasd list.

options dasd_mod dasd=201,202,200(diag),300

Use mkinitrd to create new initrd that loads the dasd_diag_mod in the right order and that picks up
the changes from modprobe.conf:

cd boot
mkinitrd --preload=dasd_diag_mod --with=dasd_fba_mod –f initrd* $(uname –r)
zipl –V

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Integrated ASCII Console

Provides a console for Linux systems on LPAR that allows execution of full screen commands (ex: vi).

Accessed via the “Recovery” menu on the HMC:

Requires console statement in the kernel parameters line, ex:
root=/dev/dasda1 console=ttyS1 console=ttyS0

Requires a mgetty line in /etc/inittab to provide a logon mechanism, ex:
SUSE:

2:2345:respawn:/sbin/mingetty --noclear /dev/ttyS1 vt220

Red Hat:
2:2345:respawn:/sbin/mingetty --noclear /dev/ttysclp0 vt220

Requires a device entry, usually “ttyS1” for SUSE and “ttysclp0” for Red Hat, in /etc/securetty to allow
root logon from the console device

Console supports only ASCII character set (not UTF8) – requires playing with the TERM and LANG
settings to get more compatible (though still not perfect) support, ex:

TERM=vt220

LANG=en_US

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Integrated ASCII Console

z/VM 5.3 introduces support for attaching the Integrated ASCII Console to a z/VM guest.

Configure the Linux system in the same way as you would for accessing the console on an LPAR.

Attach the console to the target guest, ex:
Ready; T=0.01/0.01 21:29:18
attach sysascii to LAC0034
SYSASCII attached to LAC0034

Access the console on the HMC same as you would for a Linux system booted directly on an LPAR.

The console can only be attached to only one guest at a time, ex:
Ready; T=0.01/0.01 21:29:26
attach sysascii to LAC0008
HCPSEA122E SYSASCII already attached to LAC0034

The feature is intended mostly to help with system recovery (access to fullscreen editors and such
even when the network is down).

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Cooperative Memory Management (CMM)

The CMM feature allows an external entity, like VMRM, to dynamically adjust the amount of usable
memory available to a Linux system running under z/VM.

CMM works by allocating pages of memory to a special page pool, and then sending the diagnose X’10’
instruction to notify z/VM that these pages are available for reuse.

Enabled in the kernel with the following options:
CONFIG_CMM=m
CONFIG_CMM_PROC=y
CONFIG_CMM_IUCV=y
CONFIG_SMSGIUCV=m

Example module load:
modprobe smsgiucv
modprobe cmm sender=VMRMSVM

On distros running with kernel 2.6.16 or higher, can verify the assigned sender through a file on the
sysfs:

Ex. cat /sys/module/cmm/parameters/sender

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Cooperative Memory Management (CMM)

The CMM /proc interface provides 3 configuration settings:
/proc/sys/vm/cmm_pages

-> used to read or set size of static page pool (memory block immediately available for
z/VM reuse)

/proc/sys/vm/cmm_timed_pages

-> used to read or set size of timed page pool (memory block made available to z/VM
gradually according to timeout rate)

/proc/sys/vm/cmm_timeout

-> used to set or read release rate of timed page pool. Uses 2 values. Example: “echo
100 30 > cmm_timeout” (100 pages made available to z/VM every 30 seconds)

The CMM special message interface provides 3 corresponding instructions:
SMSG <guestname> CMM SHRINK <cmm_pages_value>

SMSG <guestname> CMM RELEASE <cmm_timed_pages_value>

SMSG <guestname> CMM REUSE <pages> <seconds>

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Cooperative Memory Management (CMM)

VMRM and CMM
Officially supported on z/VM 5.2 with APAR VM64085

VMRM new configuration setting “NOTIFY MEMORY <user list> …”, ex:

NOTIFY MEMORY LTIC0001 LINUX* MARKVER DIST01 DIST34

Basically the guests in the list have been volunteered to let VMRM adjust their memory when
needed.

When z/VM is memory constrained, VMRM sends CMM special message instructions to the
guests to give up some memory for z/VM to reuse elsewhere. Target guests have to be
configured to receive special message instructions (check the “SMSG” and “SET SMSG”
commands section in the z/VM CP Commands and Utilities Reference).

When z/VM is no longer constrained; VMRM sends the appropriate instructions to shrink the CMM
special page spools, thus allowing linux to reclaim the memory for its own use.

Checkout http://www.vm.ibm.com/sysman/vmrm/vmrmcmm.html for more information.

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

DCSS and xip

z/VM defseg and saveseg commands allow you to map pages of current memory contents
and store them away in a disk backed memory allocation that can be made commonly
accessible to multiple guests.

The DCSS device driver is used to provide disk-like access to a such a saved segment.

The XIP technology allows you to treat code on a memory backed file system as if it were a
part of the virtual memory space.

Together these allow multiple linux guests to share one memory copy of commonly
executed code (such as often used library routines), and reduce over all memory usage by
linux guests.

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

DCSS and xip

The Linux memory space is extended with the mem= kernel parameter to allow reference of additional page
ranges (enough to cover the size of the DCSS).

DCSS device driver for Linux on System z is used to provide disk-like access to the Discontiguous Saved
Segment.

Built-in xip2 support in ext2/ext3 drivers is used to map the DCSS contents to virtual memory when mounting
the file system.

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

DCSS and xip

Example: Creating a DCSS in a storage gap (64bit system)
Deciding on my DCSS address range:

start-address: 512M = 0x20000000

end-address: 1G – 1 byte = 0x3FFFFFFF
Calculate page frame number for start and end address:

start-address / 4K page size = 0x20000000 / 0x1000 = 0x20000

end-address / 4K page size = 0x3FFFFFFF / 0x1000 = 0x3FFFF
Define address range to be saved:

defseg MYDCSS 0x20000-0x3FFFF sr

Make sure entire DCSS address range is reachable:
def stor 2g

Allocate the DCSS space

saveseg MYDCSS
Define a 512M gap for the DCSS (and ~2G of available memory)

def stor config 0.512m 1g.1536m

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

DCSS and xip

Example continued: Creating a DCSS in a storage gap (64bit system)
Boot up linux:

ipl 201

Login and load dcssblk module:

modprobe dcssblk

Add the DCSS for dcssblk access:

echo MYDCSS > /sys/devices/dcssblk/add

Change DCSS access mode to “exclusive-writable” so DCSS can be filled with data (note what this does is
create a private copy of the existing DCSS so make sure there is enough spool space to support two copies of
the DCSS! Also, must have class E privileges to actually make it work):

echo 0 > /sys/devices/dcssblk/MYDCSS/shared

Check for your device file:

ls -l /dev/dcssblk0

If it doesn’t exist then create the device file:

cat /sys/devices/dcssblk/MYDCSS/block/dev

252:0

mknod /dev/dcssblk0 b 252 0

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

DCSS and xip

Example continued: Creating a DCSS in a storage gap (64bit system)
Create an ext2 file system on the block device

mke2fs -b 4096 /dev/dcssblk0

Mount the filesystem (actual format depends on distro level and support for xip):

mount -t xip2 -o ro,memarea=MYDCSS /dev/dcssblk0 /mnt

Copy desired data onto the DCSS:

cp -a /usr/lib64/* /mnt

Issue the save request (the actual save request is done after the device is unmounted):

echo 1 > /sys/devices/dcssblk/MYDCSS/save

Unmount the DCSS (at this point guests that request to open the DCSS see the new changed
copy. The original copy of the DCSS is retained for guests that were already accessing it and is
removed when the last guest has stopped usage):

umount /mnt

Remove the DCSS device:

echo MYDCSS > /sys/devices/dcssblk/remove

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

DCSS and xip

The DCSS data is saved to spool space (so have plenty of spool available)

DCSS requires class E privileges to create (and to modify)

z/VM supports DCSS max 2047 MB (page frame 0x7feff) for 64bit and only up to 1960 MB (page frame
0x7a7ff) for 31bit.

The z/VM “define storage” command can be used to define multiple memory segments with a gap. And
in that case the DCSS can be placed within the gap rather than above the highest address of actual
available memory.

The dcssblk major device number is not fixed, but is assigned dynamically when the driver is loaded.
This must be accounted for if the device file has to be created manually.

Enablement of DCSS with XIP on boot up requires specialized boot scripts. These are available from
the execute-in-place documentation on the developerworks site. They have to be manually inserted in
the initrd and will likely require editing before they work properly with a particular distribution.

For more details check the following text:
Documentation/filesystems/xip.txt file in the linux kernel source
How to use Execute-in-Place Technology with Linux on z/VM - SC33-8287-00:

http://www-128.ibm.com/developerworks/linux/linux390/october2005_documentation.html

z/VM and Linux on IBM System z: The Virtualization Cookbook for SLES9:
http://www.redbooks.ibm.com/abstracts/sg246695.html

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

XPRAM

Provides mechanism for using System z expanded storage under Linux (typically used to
augment S/390 31-bit architecture which can access at most 2 gigabytes of main memory)

The storage can be used to provide fast swap device or fast file systems.

Can divide the available expanded storage with up to 32 partitions. The device nodes are
typically called /dev/slram0 - /dev/slram31

Example module load:
modprobe xpram devs=2 sizes=512000

SUSE now provides configurations files for setting up 1 xpram device
/etc/sysconfig/xpram

/etc/init.d/xpram

IBM Systems and Technology Group

Session 9239 - © 2006 IBM Corporationreturn

Discussion of other possible topics

Source VIPA
http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/docu/l26cdd03.pdf

VLAN tagging

Hipersockets

Auto-installations (kickstart & autostart)
https://www.redhat.com/docs/manuals/enterprise/RHEL-5-manual/Installation_Guide-en-
US/index.html

YaST module Autoinstallation

	Page 16
	Page 17
	Page 18
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 8
	Page 7
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 12
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 9
	Page 10
	Page 11
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47

